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Background
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 Warmer April and May temperatures lead to later
spawn timing



spawning proportion

spawn timing

* |n hot, dry conditions (e.g., 2014), later
spawhing can lead to greater exposure

2008: cool April & May temps
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Survival

Egg to fry survival function

Egg to Fry Survival Function
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Reintroduction
Temps - Keswick versus McCloud
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Reintroduction

Model

Obijectives:

Link reintroduction to
appropriate life cycle

stages in the existing

life-cycle model

Develop estimates of
fish passage collection
efficiency and survival
for inclusion in the life
cycle model

Determine whether
the reintroduction can
lead to a sustainable
population
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Dynamic reintroduction in severe
critical year (1977)
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Developing hydrologic traces

 We want to evaluate management actions
over multiple hydrologic conditions

— Incorporates hydrologic variability rather than a
single observed realization

— Provides a more robust evaluation of the actions

 We developed a set of 100 hydrologic traces,
each 100 years in length, that are consistent
with historical hydrology



Natural Flow (MAF)

Relate paleorecord to streamflow
(Meko et al. 1995)
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Meko, D., C. W. Stockton, and W. R. Boggess (1995), The tree-ring record of severe sustained
drought, Water Resour. Bull., 31(5), 789-801.

Source:environmentalbrigade.wordpress.com Source: DWR




Observed Flow State

Reconstructed State

Model transitions between wet and
dry states
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Selecting Years from the Observation Period
(Prarie et al. 2008)

Nonhomovg?lﬁ;\esci:sol\t/:]?:;ov model e Use a bootstra P
resampling
l approach with
Generate(sys)tem state replacement
St

 Given the transition
l (e.g., wet ->dry),

CENNN raarping) select years that are
f(xS,,S, 1% closer in time

Prairie, J., K. Nowak, B. Rajagopalan, U. Lall, and T. Fulp (2008), A stochastic nonparametric
approach for streamflow generation combining observational and paleoreconstructed data,
Water Resour. Res., 44



Cumulative Probability

Simulating hydrologic traces for the
Sacramento River

Empirical CDF of Consecutive Dry Years
100 simulations of 100 years
Simulated vs. Historical (1970-2014)
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What are some management actions
to reduce thermal mortality below

Keswick?

Table 1: Management actions explored in this analysis and their definitions. Actions include modification of
Shasta temperature releases only, and modification of releases in combination with reintroduction.

Action Definition

Action 1 -1 Cin July -1 C in August with 41 C in June and Sept for all years
Action 2 Action 1 but just in Critical years

Action 3 -1 C in April +1.5 C in September for all years

Action 4 Action 3 but just in Critical years

Action 5 Action 3 in all but Critical years

Action 1R -1 C in July -1 C in August with +1 C in June and Sept for all years with reintroduction
Action 2R Action 1 but just in Critical years with reintroduction

Action 3R -1 C in April +1.5 C in September for all years with reintroduction
Action 4R Action 3 but just in Critical years with reintroduction

Action bR Action 3 in all but Critical years with reintroduction




Preliminary Results
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Results - Actions 1 thru 5

Action Mean Pr(Action > Baseline)
1 0.274 % 0.74
2 0.274 % 0.74
3 -20.2 % 0.00
4 -4.46 % 0.00
5  -16.5% 0.00




Relative Abundance
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Results — Actions with Reintroduction

Action Mean Prob.Action

Reintroduction 0.722 % 0.76
1 1.18 % 0.76
2 1.18 % 0.76
3 -19.5 % 0.02
4  -3.69 % 0.05
5 -16.5% 0.04




Dynamic Reintroduction

Reintroduction implemented in strong Critical (1977)
Reintroduction
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Relative Abundance
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Discussion Topics

* [sa 1C June for 1C August trade a reasonable
assumption, what about 1C April for 1.5C
Sept?

* What other temperature management actions
seem interesting to evaluate?

* Hydrologic traces reflect historical hydrology —

how can we update this analysis to reflect
climate change?



What will the future hold?

in California

California is currently in the midst of a record-setting drought. The
drought began in 2012 and now includes the lowest calendar-year
and 12-mo precipitation, the highest annual temperature, and the
most extreme drought indicators on record. The extremely warm
and dry conditions have led to acute water shortages, ground-
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Anthropogenic warming has increased drought risk
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which steered Pacific storms away from California over consec-
utive seasons (8-11). Although the extremely persistent high
pressure is at least a century-scale occurrence (8), anthropogenic
global warming has very likely increased the probability of such
conditions (8, 9).

* Future precipitation deficits are more likely to
be coupled with warm conditions that

produce drought



